Optimal Maps for Themultidimensionalmonge - Kantorovich

نویسنده

  • WILFRID GANGBO
چکیده

Let 1; ; N be Borel, probability measures on R

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Slopes of Kantorovich Potentials and Existence of Optimal Transport Maps in Metric Measure Spaces

We study optimal transportation with the quadratic cost function in geodesic metric spaces satisfying suitable non-branching assumptions. We introduce and study the notions of slope along curves and along geodesics and we apply the latter to prove suitable generalizations of Brenier’s theorem of existence of optimal maps.

متن کامل

Optimal Transport Maps in Monge-Kantorovich Problem

In the first part of the paper we briefly decribe the classical problem, raised by Monge in 1781, of optimal transportation of mass. We discuss also Kantorovich’s weak solution of the problem, which leads to general existence results, to a dual formulation, and to necessary and sufficient optimality conditions. In the second part we describe some recent progress on the problem of the existence ...

متن کامل

Martingale Optimal Transport

The original transport problem is to optimally move a pile of soil to an excavation. Mathematically, given two measures of equal mass, we look for an optimal map that takes one measure to the other one and also minimizes a given cost functional. Kantorovich relaxed this problem by considering a measure whose marginals agree with given two measures instead of a bijection. This generalization lin...

متن کامل

Monge-Kantorovich depth, quantiles, ranks and signs

We propose new concepts of statistical depth, multivariate quantiles, ranks and signs, based on canonical transportation maps between a distribution of interest on IR and a reference distribution on the d-dimensional unit ball. The new depth concept, called Monge-Kantorovich depth, specializes to halfspace depth in the case of elliptical distributions, but, for more general distributions, diffe...

متن کامل

Optimal Couplings of Kantorovich-Rubinstein-Wasserstein Lp-distance

The research is supported by Zhejiang Provincial Education Department Research Projects (Y201016421) Abstract We achieve that the optimal solutions according to Kantorovich-Rubinstein-Wasserstein Lp−distance (p > 2) (abbreviation: KRW Lp−distance) in a bounded region of Euclidean plane satisfy a partial differential equation. We can also obtain the similar results about Monge-Kantorovich proble...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996